
Inverse Problems, Design and Optimization Symposium 
Rio de Janeiro, Brazil, 2004 

Neural Network based Models in the Inversion of Temperature Vertical 
Profiles from Radiation Data 

 
 

Élcio H. Shiguemori, Haroldo F. de Campos Velho 
José Demisio S. da Silva, João C. Carvalho 

 
Laboratory for Computing and Applied Mathematics – LAC 

National Institute for Space Research – INPE 
São José dos Campos, SP, Brazil 

[elcio, haroldo, demisio]@lac.inpe.br 
 
 
 
ABSTRACT 

In this paper, vertical temperature profiles are 
inferred by a neural network based inverse 
procedure from satellite data. A Multilayer 
Perceptrons network is trained using data 
provided by the direct model characterized by the 
Radiative Transfer Equation (RTE). The neural 
network results are compared to the ones obtained 
from previous works. In addition, real radiation 
data from the HIRS/2 - High Resolution Infrared 
Radiation Sounder - is used as input for the neural 
networks to generate temperature profiles that are 
compared to measured temperature profiles from 
radiosonde. Analysis of the neural network results 
reveals the generated profiles closely approximate 
the results of Carvalho et al. and Ramos et al. [1, 
2], thus showing adequacy of neural network 
based models in solving the inverse problem of 
temperature retrieval from satellite data. The 
advantages of using neural network based systems 
are related to their intrinsic features of parallelism 
and hardware implementation possibilities that 
may imply in very fast processing systems. 

 
INTRODUCTION 

The vertical structure of temperature and 
water vapor plays an important role in the 
meteorological process of the atmosphere. 
However due to logistics and economic problems, 
there is a lack of observation in several regions of 
the Earth. In this sense, the retrieval of 
temperature and humidity profiles from satellite 
radiance data became important for applications 
such as weather analyses and data assimilation in 
numerical weather predictions models. 

Interpretation of satellite radiances in terms of 
meteorological parameters requires the inversion 
of the Radiative Transfer Equation (RTE) where 
measurements of radiation performed in different 

frequencies are related to the energy from 
different atmospheric regions. The degree of 
indetermination is associated with the spectral 
resolution and the number of spectral channels. 
Moreover, usually this  solution is very unstable 
regarding the noises in the measuring process [3, 
4]. Also, several methodologies and models have 
been developed to improve the satellite data 
processing. Due to the difficulty of obtaining 
correct RTE solutions, several approaches and 
methods were developed to extract information 
from satellite data [5-7]. 

In this paper an Artificial Neural Network 
(ANN) is used to solve the inversion of remotely 
sensed data. The temperature retrievals  of the 
new technique are compared to the ones obtained 
by Carvalho et al. and Ramos et al. [1, 2], who 
used Tikhonov and maximum entropy principle 
regularization techniques. 
 
DIRECT PROBLEM 

The direct problem may be expressed by: 
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where λI  is the spectral radiance, λ is the channel 

frequency; ℑ  is the layer to space atmospheric 
transmittance function, the subscript s denotes 
surface [9]; and B is the Planck function which is 
a function of the temperature T and pressure p: 
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being h the Planck constant, c the light speed, and 
kB the Boltzmann constant. 
      For practical purposes, equation (1) is 
discretized  using central finite differences: 
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with )0(

i
II i λ≡ , λN  is the number of channels 

in the satellite, and Np is the number of the 
atmospheric layers considered. 
 
NEURAL NETWORK ARCHITECTURE 

Artificial neural networks (ANN) are made 
of arrangements of processing elements 
(neurons). The artificial neuron model basically 
consists of a linear combiner followed by an 
activation function. Arrangements of such units 
form the ANNs that are characterized by: 
1. Very simple neuron-like processing elements; 
2. Weighted connections between the processing 

elements (where knowledge is stored); 
3. Highly parallel processing and distributed 

control; 
4. Automatic learning of internal representations. 

ANNs aim to explore the massively parallel 
network of simple elements in order to yield a 
result in a very short time slice and, at the same 
time, with insensitivity to loss and failure of some 
of the elements of the network. These properties 
make artificial neural networks appropriate for 
application in pattern recognition, signal 
processing, image processing, financing, 
computer vision, engineering, etc. [8-11]. 

The simplest ANN model is the single-layer 
Perceptron with a hard limiter activation function, 
which is appropriate for solving linear problems. 
This fact prevented neural networks of being 
massively used in the 1970s [9]. In the 1980s they 
reemerged due to Hopfield´s paper on recurrent 
networks and the publication of the two volumes 
on parallel distributed processing (PDP) by 
Rumelhart and McClelland [8]. 

There exist different ANN architectures that 
are dependent upon the learning strategy adopted. 
This paper briefly describes the one ANN used in 
our simulations: the multilayer Perceptron with 
backpropagation learning. Detailed introduction 
on ANNs can be found in [8] and [11]. 

Multilayer perceptrons with backpropagation 
learning algorithm, commonly referred to as 
backpropagation neural networks are feedforward 
networks composed of an input layer, an output 
layer, and a number of hidden layers, whose aim 
is to extract high order statistics from the input 
data. Figure 1 depicts a backpropagation neural 

network with a hidden layer. Functions g and f 
provide the activation for the hidden layer and the 
output layer neurons, respectively. Neural 
networks will solve nonlinear problems, if 
nonlinear activation functions are used for the 
hidden and/or the output layers.  Figure 1 shows 
examples of such functions. 

A feedforward network can input vectors of 
real values onto output vector of real values. The 
connections among the several neurons (Figure 2) 
have associated weights that are adjusted during 
the learning process, thus changing the 
performance of the network. Two distinct phases 
can be devised while using an ANN: the training 
phase (learning process) and the run phase 
(activation of the network). The training phase 
consists of adjusting the weights for the best 
performance of the network in establishing the 
mapping of many input/output vector pairs. Once 
trained, the weights are fixed and the network can 
be presented to new inputs for which it calculates 
the corresponding outputs, based on what it has 
learned. 
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Figure 1: Two activation functions: (a) sigmoid 
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The backpropagation training is a supervised 
learning algorithm that requires both input and 
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output (desired) data. Such pairs permit the 
calculation of the error of the network as the 
difference between the calculated output and the 
desired vector. The weight adjustments are 
conducted by backpropagating such error to the 
network, governed by a change rule. The weights 
are changed by an amount proportional to the 
error at that unit, times the output of the unit 
feeding into the weight. Equation 4 shows the 
general weight correction according to the so-
called the delta rule 

 

ijji yw ηδ=∆        (4) 

 
where, δj is the local gradient, yi is the input signal 
of neuron j, and η is the learning rate parameter 
that controls the strength of change. 

 
Figure2: The backpropagation neural network 
with one hidden layer. 

 
 

NEURAL NETWORK FOR ATMOSPHERIC 
PROFILE RETRIEVAL   

Artificial neural networks have two stages in 
their application, the learning and activation steps. 
During the learning step, the weights and bias 
corresponding to each connection are adjusted to 
some reference examples. For activation, the 
output is obtained based on the weights and bias 
computed in the learning phase.  
 
Training  

The experimental data, which intrinsically 
contains errors in the real world, is simulated by 
adding a random perturbation to the exact 
solution of the direct problem, such that 

 
σµ+= exact

~ II        (5) 

where σ  is the standard deviation of the noise and 
µ  is a random variable taken from a Gaussian 
distribution, with zero mean and unitary variance. 
All numerical  experiments were carried out using 
5% of noise (σ=0.05). 

A training set is built up from Eq. (5) and it is 
called SDB1 (Synthetic Dataset 1). Another 
dataset is used: the TIGR database – with 861 
profiles, from which only 324 are chosen for the 
learning step. In addition, a third dataset is  
considered combining the both previous database 
(SBD1+TIGR).  

Figure 1 shows the layers used for 
comparasion, where the error of temperature 
profiles is computed for each layer. This feature is 
important because the main interest for 
metheorological purposes are the layers below 
p=100 hPa. 
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Figure 3 – Layers of atmospheric profile. 

 
The activation test is an important procedure 

to indicate the permormance of an ANN, the 
effective test is  conducted using data that does not 
belong to the training set. This action is called the 
generalization test of the ANN. Generalization 
tests are performed using 324 profiles. 

The average errors of simulation results for 
each atmospheric layer obtained with the trained 
MLP are described in Tables 1, 2, and 3 –   Layer-
1: 20 up to 70 hPa; Layer-2: 85 up to 200 hPa, 
Layer-3: 250 up to 475 hPa; and Layer-4: 500 up 
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to 1000 hPa (see  Figure 3). The error for each 
Layer is computed by: 
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where N is the number of points (sub-layers) at 
each layer, pa and pb are, respectively, pressure 
(level) at bottom and top for each layer.  

 
Table 1: Error for activation phase using SDB1. 
 
Hidden 
Neurons 

Layer 4 Layer 3 Layer 2 Layer 1 

1 4.9398   5.4775     3.5361     7.2428 
2 4.0273   2.8786     2.3643     1.6195 
3 3.9807   3.3278     1.8596     1.5637 
4 3.9094   3.4567     2.1508     1.5456 
5 3.5818   3.0300     2.2425     1.3647 
6 3.2713   2.7158     2.1260     1.4053 
7 3.6166   3.0840     2.0377     1.3938 
8 3.3949   3.1996     1.7783     1.3729 
9 3.0000   2.7268     1.9645     1.3984 
10 3.3638   3.1020     1.8545     1.4123 

 
Table 2: Error for activation phase using TIGR. 
 
Hidden 
Neurons 

Layer 4 Layer 3 Layer 2 Layer 1 

1 2.4359 1.8599 2.3356 4.3720 
2 3.2030 2.2812 2.6162 3.2077 
3 4.1499 1.7741 2.8376 2.8317 
4 5.4135 3.2503 2.7110 2.4988 
5 4.6339 3.3412 4.0342 3.1428 
6 5.1101 3.1859 3.8381 1.4613 
7 4.5230 3.3218 4.2085 1.9452 
8 4.8102 3.0472 4.2240 2.1983 
9 4.7721 3.0709 4.2897 1.3237 
10 4.2642 2.9387 4.5007 1.6613 

 
Table 3: Error for activation phase using 
SDB1+TIGR. 
Hidden 
Neurons 

Layer 4 Layer 3 Layer 2 Layer 1 

1 4.2138 4.6522 2.6324 4.8846 
2 2.8479 2.5561 2.3623 1.5000 
3 2.7113 2.4769 1.7222 1.5473 
4 1.9764 2.5502 1.9703 1.2561 
5 2.4640 2.7010 1.7049 1.2352 
6 2.9786 2.5721 1.6046 1.2536 
7 2.2562 2.6187 1.6242 1.1650 
8 2.2701 2.5582 1.6117 1.1672 

9 2.3689 2.5615 1.6828 1.3461 
10 2.5645 2.5300 1.7036 1.5004 

 
SIMULATION USING REAL SATELLITE 
RADIANCE DATA 

Simulations using real satellite radiance data, 
from the High Resolution Radiation Sounder 
(HIRS-2) of NOAA-14 satellite, have been 
performed to evaluate the accuracy of the 
Multilayer Perceptron. HIRS-2 is one of the three 
sounding instruments of the TIROS Operational 
Vertical Sounder (TOVS). ANN results are 
compared to in situ radiosonde measurements and 
results obtained by Carvalho et al. [1] and Ramos 
et al. [2], who used Tikhonov and Maximum 
Entropy Principle of second order regularization 
techniques. 

The number of observations corresponds to a 
fraction of the number of temperatures to be 
estimated. For instance, in the example presented 
hereafter, 40 temperature values are estimated 
from 7 radiance measurements. 
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Figure 4. Retrievals achieved using radiance data 
from NOAA-14 satellite – ANN trained using 
SDB1 database. 

 
Similar error analysis (performance of ANNs 

with different database for training) is also  
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carried out here. Tables 4, 5, and 6 present the 
errors associated to retrievals for ANN-MLP 
using different number of neurons in the hidden 
layer. 

 
Table 4: Error for ANN using SDB1. 
 
Hidden 
Neurons 

Layer 4 Layer 3 Layer 2 Layer 1 

1 8.3331 11.7801 4.1784 8.5813 
2 4.6884 1.5891 2.0928 0.7541 
3 3.9004 1.5897 2.6952 0.7698 
4 4.1328 1.3514 1.9417 0.9395 
5 3.4413 1.4532 1.6697 0.7453 
6 3.4493 2.0544 0.4835 1.1023 
7 3.8532 1.2495 1.2234 0.5779 
8 3.1445 1.6497 2.1032 0.7418 
9 2.7738 2.1136 1.6062 0.6293 
10 3.2128 2.1856 0.6496 0.6350 

 
Table 5: Error for ANN using TIGR.  
Hidden 
Neurons 

Layer 4 Layer 3 Layer 2 Layer 1 

1 3.6970 6.4571 4.7807 3.9290 
2 1.0035 3.4671 1.8482 1.6938 
3 1.3682 4.2400 1.6443 1.5805 
4 1.2431 3.8797 1.6800 1.4246 
5 1.2396 3.4584 1.9324 1.2227 
6 1.2302 3.4992 2.1354 1.4285 
7 1.2052 3.5170 2.1433 1.2738 
8 1.5869 4.0933 2.2418 1.3683 
9 1.2290 3.5378 2.2657 1.3823 
10 1.2313 3.6360 2.3371 1.4322 

 
Table 6: Error for ANN using SDB1+TIGR.  
Hidden 
Neurons 

Layer 4 Layer 3 Layer 2 Layer 1 

1 7.2495 10.5682 2.9538 5.9283 
2 2.7197 3.1742 3.5973 1.0311 
3 2.5389 3.6098 1.7893 0.8741 
4 1.4912 4.9095 2.0079 0.6776 
5 1.8251 4.1844 0.8758 0.5170 
6 2.9004 2.9490 1.5373 0.8462 
7 1.3932 4.1497 2.1490 0.6573 
8 1.6752 3.7681 2.6354 0.7627 
9 1.9158 4.0173 1.5537 0.8827 
10 2.2663 3.7773 1.2204 1.3050 
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Figure 5. Retrievals achieved using radiance from 
NOAA-14 satellite – result for TIGR database. 
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Figure 6. Retrievals achieved using radiance data 
from NOAA-14 satellite – SDB1+TIGR dataset. 
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CONCLUSION 
The mathematical formulation of the problem 

of retrieving vertical temperature profiles from 
remote sensing data is given by the integral 
radiative transfer equation, and leads to the 
solution of a highly ill-conditioned Fredholm 
integral equation of the first kind. Temperature 
versus atmospheric pressure plots are presented in 
Figures 4, 5 and 6. The results show the good 
agreement between retrievals from the ANNs and 
the radiossonde measurements. It should be noted 
that the ANN trained with SBD1 dataset 
presented the best performance, in general, 
because the temperature profiles used during the 
learning phase are closer to the regional climate 
mean. However, combining the SDB1 with the 
TIGR dataset improved the retrievals. This is an 
evidence of the database influence for the multi-
layer perceptron neural network for the 
atmospheric temperature inversion. 

ANNs were effective for solving this inverse 
problem, and the reconstructions are comparable 
with those obtained with regularization methods 
[1, 2], even for data containing noise. However, 
the NN do not remove the inherent ill-posedness 
of the inverse problem. 

In practice, operational inversion algorithms 
reduce the risk of being trapped in local minima 
by starting the iterative search process from an 
initial guess solution that is sufficiently close to 
the true profile. However, the dependence of the 
final solution on a good choice of the initial guess 
represents a fundamental weakness of such 
algorithms, particularly in regions where less a 
priori information is available [12]. ANN can 
relax this constrain incorporating more data in the 
dataset during the learning phase.  

Some advantages can be listed with  the use of 
ANNs: after the training phase, the inversion with 
NNs is much faster than the regularization 
methods; it is an intrinsicly parallel algorithm; 
finally, ANNs can be implemented in hardware 
devices, the neurocomputers, becoming the 
inversion processing faster than ANNs emulated 
by software. 

Other architectures for ANNs deserve to be 
investigated. One preliminar result can be seen 
with non-linear Hopfield’s neural network [13]. 
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